
D-A12i 432 DEVELOPMENT OF A VOICE FUNNEL SVSTEM(U) BOLT BERANEK 1/1
AND NENMAN INC CAMBRIDGE MR R D RETTBERO OCT 82
BBN-5909 MD93-79-C-8356

UNCLASSIFIED F/G 17/2 N

MOOSO Ifff ND

2.2.

11111L2 1.0.6

MICROCOPY REOUINTS HR
NAIOA 9,RA OF * 22NADS16

Bolt Beranek and Newman Inc.

Report No. 5009

Development of a Voice Funnel System
Quarterly Technical Report No. 15
1 February 1982-30 April 1982

,MI

October 1982

Prepared for:
Defense Advanced Research Projects Agency O 1IC

cDT-C
I FE _CT E

.!W

ceNOV 1 15 1982,

J B

.-F ITRIBUTION STArEmiENT -A
Approved for public reeos.;-

Distribution Unimitd ,- 1

P- UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WhImn Doie Entere_

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING PORM
-.I. RqEPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT*S CATALOG NUMBER

4. TITLE (end Subtitle) S. TYPE oF REPORT a PERIOD COVEREO

Quarterly Technical

Development of a Voice Funnel System I Feb - 30 April 1982

Quarterly Technical Report No. 15 6. PERFORMING ORG. REPORT MUMMER
Q tr5009

7. AUTHOR() S. CONTRACT OR GRANT NUM"ER)

R. D. Rettberg MDA903-78-C-0356

s. PERFORMING ORGANIZATION NAME AND ADORESS I0. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMDER%

Bolt Beranek and Newman Inc.
10 Moulton Street

Cambridge, MA 02238
11. CONTROLLING OFFICE NAME AND AODRESS 12. REPORT DATE

DARPA October 1982

1400 Wilson Boulevard 1s. NUMBER OF PAGES

Av ano-;j2 A 990 30
14. MONITRrNG AGENCY NAME S AORESS(Il different from Cmonrolling Office) IS. SECURITY CLASS. (of thile report)

UNCLASSIFIED

IS.. OECtASSI FIC ATI ON/OOWNGRAOING
SC EDULE

10. OISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A
Distribution Unlimited Approved for public relewse.rDistribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Dlock 20. If different Iram Report)

1. SUPPLEMENTARY NOTES

!9. KEY WORDS (Continue on reverse side if necoeary end Identify by block numnber)

Voice Funnel, Digitized Speech, Packet Switching, Butterfly Switch,
Multiprocessor.

20. _! STRACT (Continue on reverse side it neesseeary a identify by block number)

This Quarterly Technical Report covers work performed dwrtrrg-the
pe4od-aetred on the development of a high-speed interface, called
a Voice Funnel, between digitized speech streams and a packet-
switching communications network.

DD OM 1473 EDITION OF I NOV Of IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whom Date Entered)

Report No. 5009 Bolt Beranek and Newman Inc.

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 15
1 February 1982 to 30 April 1982

October 1982

This research was sponsored by the
Defense Advanced Research Projects

KAgency under ARPA Order No.: 3653
Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO
Effective date of contract: 1 September 1978
Contract expiration date: 31 December 1982
Principal investigator: R. D. Rettberg

Prepared for:

-Dr. Robert E. Kahn, Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, VA 22209

The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of

* the Defense Advanced Research Projects Agency or the United
States Government.

w

Report No. 5009 Bolt Beranek and Newman Inc.

UTable of Contents

1. Introduction e................................... 1
2. Object Management 2
2.1 Object Types 4
2.2 Object Handles 7

2.3 Object Data Structures 9
2.4 Object Management Functions 13

I

Accession For

NTIS G A&I

• D7TC TA2

*tietop,..

Report No. 5009 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 15, describes

aspects of our work performed under Contract No. 903-78-C-0356

m -during the period from 1 February 1982 to 30 April 1982. This is

the fifteenth in a series of Quarterly Technical Reports on the

design of a packet speech concentrator, the Voice Funnel.

In Quarterly Technical Report Number 5, we presented a pre-

implementation description of the part of the operating system

which is responsible for object management. In this report. we

present a description of the Object Management System as it was

finally implemented.

'3

Report No. 5009 Bolt Beranek and Newman Inc.

2. Object Management

The Object Management System unifies many data structures in

the Butterfly operating system, Chrysalis. These data structures

support the central mechanisms of the operating system such as

free and allocated memory, processes, and events. The Object

Management System gives us a simple 32-bit handle on these data

structures and a simple way of referencing these objects. For

example, a process is represented by a data structure called a

Process Control Block; the Object System gives us a "Process

Handle" that is used throughout the system to represent the

process and that can be used to find the associated Process

Control Block.

The Butterfly, like the Pluribus, is based on the notion

that the ability to share memory is important if a multiprocessor

is to achieve high performance. At the same time, our experience

with the Pluribus indicates that if we are to have shared memory,

we must provide adequate mechanisms to manage that memory. For

this reason, the hardware of the Butterfly Multiprocessor

implements a segmented address space with access protection on

each segment.

One of the roles of the Object Management System is to help
V the programmer to manage this form of address space. One of the

ways it does this is by letting the user define memory-based

objects of many types and providing system calls which place them

-2-

.. =

I

Report No. 5009 Bolt Beranek and Newman Inc.

iP4 into and remove them from segments in his address space in a

natural way.

Since each memory object is represented by an Object Handle

that is unique across the whole machine, a process can share a

data structure with other processes by giving those processes a

copy of the Object Handle. In this way, the notion of an Object

Handle forms a basic mechanism for inter-process communications

while it also helps the programmer deal with the segmented nature

of the machine's address space in a comfortable manner.

The Object Management System as it is currently implemented

provides only a limited degree of protection against programming

errors and is not intended to protect against malicious users.

The memory management hardware supports access controls for each

segment. The exact forms of access that are permitted are

described in Quarterly Technical Report Number 12. Only thoseI
objects that are mapped into the address space of a process can

be modified by that process and the only modifications that are

permitted are those specified by the hardware.

In a more comprehensive protection scheme, it would be

* necessary to control which objects may be mapped in by a process

and what forms of access are legal. Right now, a process can ask

to have access to any object and may request read or read and

write access modes. This is adequate for the funnel and is very

useful in detecting many software bugs.

Report No. 5009 Bolt Beranek and Newman Inc.

2.1 Object Types

At this time, the object system supports the following 10

different types of objects; others will be added as they become

necessary.

- Event Block.
- Timer Event Block.
- Process Control Block.
- Process Template.
- Channel Control Block.
- I/O device block.
- Variable length data block.
- System queue block.
- Dual Queue header.
- General user object.

The "Event Block" is the data structure for Events. Events

are used to control process activation and for inter-process

communications.

The "Timer Event Block" is used to wake a process at some

specified time in the future.

The "Process Control Block" (PCB) is the primary data

structure for a process. It includes address space information,

scheduling information and saved process state. Each process is

represented by its own PCB even if several processes are sharing

the same code segment.

The "Process Template" contains a pointer to the code and

initialized data of a process so that copies of a process can be

created easily. The Process Template is much like the object

--

Report No. 5009 Bolt Beranek and Newman Inc.

N file for a program.

The "Channel Control Block" (CCB) is the data structure used

by the I/O system to maintain chained buffers for input and
output. Quarterly Technical Report Number 10 describes CCBs and

the I/0 system in detail. [The current structure for this object

is incompatible with the data structure described in the previous

section. We plan to fix it in a future I/O board microcode

release.]

The "I/O Device block" represents one physical I/O device in

the system.

The "Variable length data block" is not an object at all,

but simply a way of reserving space in Segment F8 for special

operating system data structures.

The "System Queue Block" is used by the operating system to

maintain some of its internal queues and is used by I/O processes

to maintain special queues of CCBs as well.

The "Dual Queue" is a microcoded synchronization and task

allocation mechanism.

The "General User Object" (also called a "memory object")

has both an object header and a piece of the Processor Node's

physical memory. The object header is located in an area of

memory used by the system for object headers; the memory portion

is allocated from the free physical memory of the Processor Node.

-5-

Report No. 5009 Bolt Beranek and Newman Inc.

The user creates this type of object in the process of memory

allocation. The memory is available in the sizes supported by

the memory management hardware (see QTR 12). With the handle

3which represents this physical memory, any process in the machine

may map the memory into its address space.

Because many processes may have access to a memory object at

the same time, it may be difficult for the application software

to determine when the memory object is no longer in use and

should be deleted. This problem is further complicated by the

possibility that a process may terminate normally or abnormally

while it has the object mapped into its address space.

To solve these problems, the Object Management System

controls the allocation of this type of object. The object

header contains a usage count to keep track of how many processes

have it mapped in. Whenever a process maps it in, the use count

is incremented. Whenever it is unmapped, the use count is

decremented. For a memory object to be deleted by the operating

system, two conditions must be met. First, the use count must be

zero. Second, the object must have been explicitly deleted.

This lets a process hand a memory object to another process

without concern for whether the receiver has mapped the object in

before the sender unmaps it. It also lets a process delete a

memory object without having to track down outstanding pointers

to that object.

- 6-

" Report No. 5009 Bolt Beranek and Newman Inc.

2.2 Object Handles

An Object Handle is like a pointer to the data structure

that is associated with an object. However, unlike a simple

pointer, an Object Handle must be interpreted before it can be

used. In return for this additional processing overhead, an

Object Handle is much safer to use in a large system than a

simple pointer would be.

In practice, the structure of an Object Handle is not

important to application programs -- the handle is passed as a

single unit to the system routines that implement the object

system and it is stored as a 32-bit "long" in the machine.

Internally, the system breaks an Object Handle into three fields

as shown below.

Processor Node I Sequence Number Offset in Segment F8 1
i (8 bits) (8 bits) 1 (16 bits)

The first field specifies which Processor Node contains the

header data structure for this object.

The sequence number field is for debugging and error

detection purposes. It is compared with a corresponding sequence

number field in the object's data structure whenever the handle

is used. In this way, we detect obsolete Object Handles and are

also often able to detect when a "handle" is not an Object Handle

at all.

- .- *

Report No. 5009 Bolt Beranek and Newman Inc.

The reader will notice that because the sequence number

field is only 8 bits, once the same data structure has been re-

used 256 times, obsolete handles are no longer detected. In other

words, Object Handles are not totally unique. This means that in

operational software, the programmer should not count on Object

Handles to detect when resources have become unavailable.

Instead, he should explicitly clean up after failures. However,

as a debugging aid 8-bits should be adequate since it is very

unlikely that an object data structure will have been reused

exactly 256 times at the time that an obsolete handle is used.

The final portion of the handle, the "Offset in Segment F8",

is actually a pointer. In order to understand its function, we

must review the memory layout of the machine. The 24-bit address

of the 68000 is divided into an 8-bit segment number and a 16-bit

offest. There are 256 segments in a process, numbered from 0 to

hex FF. Segment zero is used for hardware support. Segments F8

through FF are used for system functions.

By convention, we assign segment F8 to operating system data

structures and provide a memory allocation package that treats

this segment by itself. When we allocate objects, we always do

it from segment F8. We adopt the further convention that

physical memory starting at location zero is mapped into segment

F8 in every Processor Node. Thus, the data structure

corresponding to an Object Handle is found on the Processor Node

specified in the handle, and begins in physical memory at the

-8-

Report No. 5009 Bolt Beranek and Newman Inc.

offset specified in the handle. These conventions permit the

microcode of the Processor Node Controller to find the data

structures of the object system so that the microcode can provide

mhigh-level functions for the operating system.

This strategy makes good use of the bits in the handle and

is easy to interpret but limits the number of objects that are

possible on a node to what fits in a single segment. Even with

this limit a very large number of objects can be supported. If

we find it necessary to change this strategy in the future, the

impact on the application software should be minimal since the

application software considers the Object Handle to be atomic.

2.3 Object Data Structures

The data structures for all objects have a common form. The

* first entry is a pointer to another object of the same type.

This is followed by the structure given below. At the end is a

structure that depends on the type of the object.

- 9-

Report No. 5009 Bolt Beranek and Newman Inc.

!{

char unsigned otype; l* block type /
char bits oflags; /* flags, see below I
char unsigned ostype; /I block subtype */
char unsigned oseqno; /* sequence number V
bits o-prot; /* protection bits */
OID oowner; /* owners Object Handle V

/1* definitions for o.flags /

OFROZEN Ox08 /* object is frozen i/
O_HASNAME Ox10 /I object has a name */
O_FREE Ox20 /1* object is not in use*/
O_DELETED Ox4O /I object has been deleted 1/

Figure 1 - Uniform Object Header

"otype" specifies the type of this object. "ostype"

permits the existence of objects that act in the same way from

the point of view of the object system, but are to be handled

differently by the user programs. "o-seqno" is the sequence

number that corresponds to the sequence number in the handle.

"o-prot" is currently unused.

The flags in the object header control special states of the

object. When a system call or microcode function involving an

object returns an error, the flags are often reported. Some of

the objects can be "frozen" so that their normal functions are

prohibited. In this state, they can be verified for correctness,

debugged, or prepared for deletion.

The flag OHASNAME is set whenever the object has a

corresponding entry in the system-wide name table. The name

table provides a service that couples Object Handles (or in fact

-10-

Report No. 5009 Bolt Beranek and Newman Inc.

any long value) to strings that name the object. The table is

arranged by type so that the same name can be used by different

types. All of the object types are filed in this system under

m *the type 256.

By using the name table, a process can find the important

system-wide resources that it needs. For example, events which

signal important occurrences will have names. Many processes

will also have names. As a debugging aid, a command is available

which types out the names of objects.

The two final flags are used by the object allocation

routines to manage the allocation and deletion of objects.

IThe "oowner" field contains the Object Handle of the object

that owns it. Often, this field will contain the handle for the

process that created the object. The owner can change this field

by calling a function which "disowns" the object and passes

ownership to another object. If the owner of an object is zero,

then the system is considered to own the object. Sometimes it is

useful to have a data object own other data objects. For

example, it may be useful to have a Free Queue own its buffers.

In fact, we use ownership to ensure that deletion occurs in the

proper order (e.g. that the Free Queue gets deleted before the

Buffer Pool does) and that deletion of one component of a Buffer

Pool (the Free Queue) guarantees deletion of all data structures

that depend on it.

- 11 -

I

Report No. 5009 Bolt Beranek and Newman In-.

The notion of ownership is normally used to figure out when

to delete an object when a process terminates. For most objects,

when a process is deleted, the system arranges to delete its

resources directly, but in some cases, it is easier for the

system to simply mark the process deleted and let the garbage

collector delete it later. The operating system contains a

garbage collection process which periodically examines each

object on the Processor Node. If the owner is no longer valid,

then the object is deleted.

-12-

Report No. 5009 Bolt Beranek and Newman Inc.

F

2.4 Object Management Functions

On the following pages, we have provided the documentation

for the Chrysalis system calls which manipulate objects for the

I user or for other operating system routines. While this

documentation reflects that current implementation, Chrysalis is

constantly evolving and these routines are subject to change

without notice.

In addition to these routines, there are routines which are

used to manipulate specific types of objects such as events or

Dual Queues. These routines will be described in the Chrysalis

operating system manual.

1

,* - 13 -

Report No. 5009 Bolt Beranek and Newman Inc.

Title: MakeObj

Function: Creates a memory-type object.

Arguments:

1. char Subtype of the object
2. int Processor node on which to create object (-1 => local)
3. int Size of the memory of this object in bytes
4. bits Desired protection code, (0 => use default)

Return Value: OID -- Object Handle for the new object.

Possible Exceptions:

CONSISTENCY Specified processor is not up
NOMEM FB is out of memory
NOMEM Memory is not available

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

Gets an object of the type which represents a block of user
memory on the specified Processor Node. Minus one specifies
that the current processor node is to be used. The subtype
field is available to the application program for its own pur-
poses. The memory block allocated is large enough to provide
the size block requested, and is one of the following sizes:
0, 256 bytes, 512, 768, 1024 (1K bytes), 1536, 2K, 3K, 4K, 6K,
8K, 12K, 16K, 24K, 32K, 64K. Notice that 48K is omitted from
this sequence and that 64K bytes is the largest size available.

All allocatable memory is cleared during Chrysalis initializa-
tion, and the data you store into a memory block will be
cleared automatically when the object is finally deleted.
Therefore you can count on MakeObj returning a memory block

4 which has been set to all zeros.

Bugs:

4

4 -14-

Report No. 5009 Bolt Beranek and Newman Inc.

!*IE Title: DelObj

Function: Delete an Object and recover resources.

Arguments:

1. OID Object Handle of the object to delete

Return Value: None.

Possible Exceptions:

BADHANDLE Invalid Object Handle

Files: /usr/butterfly/chrys/obj/cou.c68

Description:

Deletes the object corresponding to the OID supplied. It also
deletes any name associated with the object, and frees up and
clears memory owned by the object.

For memory-type objects, the delete does not take effect until
the object has been Unmapped by all the processes which were
using it. This type of object includes a 'DELETED' bit, and a
use counter which is incremented and decremented by MapObj and
UnmapObj respectively. Unmap automatically calls DelObj if
the use counter goes to zero for a 'DELETED' object.

DelObj understands how to do the special processing needed to
delete all types of object, including processes and process
templates. If you delete a dual queue for which processes are
waiting, the associated event blocks are automatically posted
with a data value of NULL.

The garbage collector calls DelObj whenever it encounters an
object whose owner field contains an invalid Object Handle.
Although it is good practice to explicitly delete objects you
own before exiting, the garbage collector will generally
succeed in cleaning up after processes which terminate unex-
pectedly.

Bugs: None.

- 15 -

Report No. 5009 Bolt Beranek and Newman Inc.

Title: MapObj

Function: Maps the memory of a memory-type object into the
user's address space.

Arguments:

1. OID Object Handle for the desired object
2. int Desired segment number (0 => use highest free segment)
3. bits Desired access mode

Return Value: char* -- Pointer to the memory region.

Possible Exceptions:

BADHANDLE Invalid Object Handle
CONSISTENCY Object has no memory
CONSISTENCY Invalid segment specified
NOMEM Process has no free segments
CONSISTENCY Requested access is not allowed

Files: /usr/butterfly/chrys/prot/cou.c68
/usr/butterfly/h/public.h

Description:

This routine maps in the memory of a memory-type object. It
accepts an Object Handle and a segment number. If segment
number zero is specified an unused segment is allocated and
added to the process's address space. If a specific segment is
specified it must be free. The memory portion of the object
will fill the segment exactly.

If this routine is called in user-mode, only those modes
allowed by the protection bits in the OAB are legal. There are
eight hardware protection modes, as listed in the following
table.

R_ Only kernel mode routines can read this segment.
RW_ Kernel mode routines can read or write it.
H r__ Kernel or user-mode routines can read it.
RW_r_ Kernel read/write, user read only.
RW_rw_ Read/write in either mode.
R_Xr_x Read or execute code in either mode.
Rr_x Read in either mode, or execute user-mode code.
RWXrwx Anything goes.

Bugs: Currently, the protection bits in the OAB are ignored, and
user-mode programs may request one of the following three modes:
RW-rw_, RW.r.., and Rr_.

- 16 -

Report No. 5009 Bolt Beranek and Newman Inc.

STitle: UnmapObJ

Function: Removes an object from the address space of a process.

Arguments:

M 1. OID Object Handle for object to unmap
2. char* Pointer to the object

Return Value: None.

* ~Possible Exceptions:

BADHANDLE Invalid Object Handle
*CONSISTENCY Invalid object address

CONSISTENCY Object/address mismatch

LJ Files: /usr/butterfly/chrys/prot/cou.c68

Description:

This is the inverse of the MapObj call. It removes the object
from the process's address space and marks the segment unused.
If the object's use count goes to zero and its 'DELETED' bit is
set, Del_Obj is called to recover the object's resources.

Bugs: None.

1

- 17 -

1

Report No. 5009 Bolt Beranek and Newman Inc.

Title: map.oab

Function: Maps in the Object Attribute Block of an object.

Arguments:

1. OID Object Handle for desired OAB
2. int Object type expected (0 => any type)
3. int Desired segment number

Return Value: CAB* -- Pointer to the QAB.

Possible Exceptions:

BADHANDLE Invalid Object Handle
CONSISTENCY Invalid segment specified

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

Map the OAB for the specified object into the process's address
space. The argument "type" is the desired type of the object.
A type of zero will cause this routine to accept any type of
CAB. If the object is on this processor node, then segment F8
will be used. Otherwise if segment zero is specified, the
highest numbered free segment in the user's address space will
be used; else if a free user segment is specified, it is used.

OABs should be unmapped using unmap-oab.

Some Chrysalis routines must use segments outside the user's
SAR group. To provide for this, if a kernel segment (above F8)
is specified, it is used but only if mapoab was called with
interrupts inhibited. Inhibiting interrupts 'locks' the use of
these segments, and they must remain inhibited until unmapoab
has been called.

In some cases where Chrysalis needs to map an OAB and check
that it is local, we specify segment F8 (without inhibiting
interrupts). This will fail if F8 was not already set
correctly, i.e., if the OAB is remote. In this case it is not
necessary (but is permissible) to call unmap-oab.

4

Bugs: Any process can map in any OAB, with RW_r__ access.

-18

Report No. 5009 Bolt Beranek and Newman Inc.

1 3 Title: map.myoab

Function: Maps in a local OAB owned by this process.

Arguments:

1. OID Object Handle for desired OAB
n 2. int Object type expected (0 => any type)

Return Value: OAB* -- Pointer to the QAB.

Possible Exceptions:

BADHANDLE Invalid Object Handle

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

Like mapcoab except that only local objects owned by this pro-
cess are accepted. A pointer to the specified CAB is con-
structed using segment F8. This routine is used to enforce the
restriction that an object be owned by the current process on
the current node (for example, when manipulating event blocks).

The argument "type" is the desired type of the object. A type
of zero will cause this routine to accept any type of OAB.

Since F8 is always used, it is unnecessary (but permissible) to
call unmap-oab when you finish using the returned pointer.

*Bugs:

-19-

-

Report No. 5009 Bolt Beranek and Newman Inc.

Title: pno.widen macro

Function: Maps in a local OAB with no checking.

Arguments:

1. OlD Object Handle for desired OAB

Return Value: OAB* -- Pointer to the QAB.

Possible Exceptions: None.

Files: /usr/butterfly/h/pnc.h

Description:

Like map-oab except that only local objects can be referenced,
and no checking is done. A pointer to the specified QAB is
constructed using segment F8. This macro is used when you are
sure an Object Handle is local and is valid, and want to map in
its QAB as quickly as possible.

Since F8 is always used, it is unnecessary (but permissible) to
call unmapoab when you finish using the returned nointer.

Bugs:

2

4

4

'4 - 20 -

Report No. 5009 Bolt Beranek and Newman Inc.

Title: unmapoab

Function: Removes an CAB from an address space.

Arguments:

1. OAB* Pointer to the OAB

Return Value: None.

Possible Exceptions:

CONSISTENCY Invalid oab pointer

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

Removes the QAB from the user's address space and marks the SAR
free. This routine is a nop for local objects mapped via seg-
ment F8.

If a kernel segment (above F8) is specified, interrupts must be
inhibited.

Bugs: Not much checking is done. If the segment number is valid
and in use, the segment is made free. Be careful not to use
unmapoab instead of UnmapObj, as that will invalidate the
object's use count leaving it undeletable.

2

r - 21 -

i

Report No. 5009 Bolt Beranek and Newman Inc.

(Title: ObjOK

Function: Checks the validity of an Object Handle.

Arguments:

1. OID Object Handle to check

Return Value: int -- TRUE if ok, else FALSE.

Possible Exceptions:

CHECK Bus error -- Object Handle was garbage
CHECK Address error -- Object Handle was garbage

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

This routine checks Object Handles for currency; its operation
is undefined if its argument was never a process handle. How-
ever. NULL Object Handles and handles which specify invalid or
non-running Processor Nodes will always return FALSE.

Obj_0K maps in the given object and checks its sequence number
for validity. Bus/address errors are possible only if the
alleged Object Handle was never valid or the switch fails.

Bugs: None.

-22-

Report No. 5009 Bolt Beranek and Newman Inc.

I ~ Title: DisownObj

Function: Gives up ownership of an object.

Arguments:

* 1. OID Object Handle for the desired object
2. OID Object Handle for the new owner (or NULL)

Return Value: None.

Possible Exceptions:

BADHANDLE Invalid Object Handle
NOMEM Process has no free segments
CONSISTENCY Not your object
CONSISTENCY Can't disown events

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

Gives up the ownership of an object. If the new owner argument
is NULL, ownership passes to the system, and the object remains
allocated until explicitly deleted. Otherwise "he new owner
must be a valid Object Handle (frequently a p)cess handle),
which inherits ownership of the objec

When an owner object is deleted, o1',,ts *iich it still owns
are automatically deleted by th: garbage collector. Of course
memory-type deleted objects do not actually disappear as long
as their memory is mapped in by any process.

Disowning event blocks is not allowed.

Bugs: The new owner argument is not checked; if it turns out to
be invalid the object will be deleted by the garbage collector.
Also, it is currently impossible to disown CCBs.

- 23 -

Report No. 5009 Bolt Beranek and Newman Inc.

Title: CopyObj

Function: Creates a new copy of a memory-type object.

Arguments:

1. OID Object Handle of the old object
2. int Protection bits for the new object (0 => no change)
3. int TRUE to splice new object into a chain, else FALSE

Return Value: OID -- Object Handle of the new object.

Possible Exceptions:

BADHANDLE Invalid Object Handle
NOMEM Process has no free segments
NOMEM F8 is out of memory
NOMEM Memory is not available

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

This routine creates a new copy, on this processor node, of the
memory-type object specified. The OID for the new object is
returned. If the specified protection is 0, the protection
field 's copied from the old object. If the chain argument is
TRUE, the new object is spliced into the old object's o_link
chain, and the oowner field is copied from the old object.
The subtype field is copied from the old object.

This routine will copy linked objects. A linked object is a
group of objects, on the same processor node, linked together
via the olink field in the object header, and referenced by
the Object Handle of the first object in the list.

This routine needs two free SARs in the current address space.

Bugs:

- 24 -

Report No. 5009 Bolt Beranek and Newman Inc.

* N Title: GetObj

Function: Underlying object creation routine.

Arguments:

1. char Type code of object
2. char Subtype of the object
3. int Processor node on which to create object
4. int Size of the memory of this object in bytes
5. bits Desired protection code, (0 => use default)

Return Value: OID -- oid of object created.

Possible Exceptions:

CONSISTENCY Type is out of range
CONSISTENCY Specified processor is not up
NOMEM F8 is out of memory
NOMEM Memory is not available

Files: /usr/butterfly/chrys/prot/cou.c68

Description:

1Gets an object of the specified type and subtype on the speci-
fied Processor Node. If the type is BTOAB, then memory can be
associated with the object and its length is as specified.

This routine must be called in kernel mode.

[Bugs: Protection is not yet implemented.

- 25 -

Report No. 5009 Bolt Beranek and Newman Inc.

Title: Find-Value

Function: Finds a value, given a name and type.

Arguments:

1. char* Asciz name
2. char Type of entry

Return Value: bits -- Value associated with the given name and

type.

Possible Exceptions:

FAILED Name table entry was not found

Files: /usr/butterfly/chrys/prot/name.c68

* Description:

Searches the global name table for the specified name and type.
If the name is not found, an exception is thrown.

Bugs: None.

2
4

a

*i -26 -

Report No. 5009 Bolt Beranek and Newman Inc.

* Title: Find-Name

Function: Finds a name, given a value and type.

Arguments:

1. char* Address at which to store asciz name
2. bits Value of entry
3. char Type of entry

Return Value: None -- name is copied to the specified address.

Possible Exceptions:

FAILED Name table entry was not found

Files: /usr/butterfly/chrys/prot/name.c68

Description:

Searches the global name table for the specified value and
type. If the value is not found, an exception is thrown.

Bugs: None.

2

- 27 -

Report No. 5009 Bolt Beranek and Newman Inc.

Title: NameBind

Function: Adds a name/value/type triple to the global name
table.

Arguments:

1. char* Address of asciz name
2. bits Value of entry
3. char Type of entry

Return Value: None.

Possible Exceptions:

FAILED Duplicate name in use
FAILED Duplicate value in use
FAILED Global name table is full
CONSISTENCY Value is not an Object Handle

Files: /usr/butterfly/chrys/prot/name.c68

Description:

This routine creates a system-wide binding between a triple cf
an ascii name, a value, and a type. It can be used to find
public objects, such as dual queues, and public parameters of
any sort.

Low numbered types can be used as needed by application pro-
grams. Within a given type, both name and values must be
unique; that is, a given name may appear only once under a
given type, and the same goes for values.

High numbered types may have meaning to Chrysalis. So far the
only type assigned is NTYPEOBJ (Oxff). This type can be used
only to assign a name to an object. The name will be automati-
cally deleted by Chrysalis if the object is deleted. The value
assigned must be a valid Object Handle for a previously unnamed
object, and the name must not conflict with other names of this
type. :1

Bugs: None.

- 28 -

I.-

Report No. 5009 Bolt Beranek and Newman Inc.
K

~ip Title: Name-Unbind

Function: Removes a entry from the global name table.

Arguments:

1. bits Value of entry
2. char Type of entry

Return Value: None.

Possible Exceptions:

FAILED Name table entry was not found

Files: /usr/butterfly/chrys/prot/name.c68

Description:

Searches the global name table for the specified value and type
and removes it. If the value is not found, an exception is
thrown.

Bugs: None.

- 29 -

Report No. 5009 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defense Aanced Research Prcts Agenc
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

Deens S Servic -- Wahinlton
Jane D. Hensley (1)

Defense Documentation Center (12)

Danny Cohen
Steve Casner

MT/hLncoln j"
Dr. Clifford J. Weinstein (3)

SiI International
Earl Craighill (1)

LQm= AX Delpe nt Cete
Neil Marples- RBES (1)
Julian Gitlin - DCLD (1)

BBe raek Al Newman In.
Library
Library, Canoga Park Office (2)
S. Blumenthal
R. Bressler
R. Brooks
P. Carvey
P. Castleman
W. Edmond
G. Falk
J. Goodhue
S. Groff
E. Harriman
F. Heart
M. Hoffman
M. Kraley
A. Lake
W. Mann
W. Milliken
M. Nodine
R. Rettberg
P. Santos
G. Simpson
E. Starr
E. Wolf

9 -30- -

.

